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Tensor low-energy electron diffraction 
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Depanment of Physics, University of Maryland Baltimore County, Catonsville. MD 21228, USA 

Received 28 June 1994 

Abstract The tensor low-energy electron diffraction ( E E D )  approximation is a perturbative 
approach to the calculation of LEED I V SpeCKa. This article reviews the theory, applications and 
impact of the tensor LEED approximation upon surface crystallography by LEED. The theory of the 
tensor WED approximation is outlined and the physical reasons for the success of the technique 
are discussed. Particular attention is paid to the relative importance of multiple scattering 
correlations in limiting the radius of convergence of the approximation. The applications and 
extensions of tensor LEED theory are reviewed. The utility of tensor LEU) theory as the basis of 
novel methods in surface mwtm determination is outlined with particular emphasis upon the 
extension of tensor LEED theory to chemical and thermal displacements. The article concludes 
with a brief evaluation of future prospects and applications of the theory of lensor LEED. 

1. Introduction 

Over the past 20 years, the field of surface science has seen the continual development 
of new techniques for retrieving surface structural information and the associated claims of 
straightforward and routine interpretation of experimental data [ I ,  21. The evolution of these 
techniques is described in a recent volume that reviews the first 30 years of surface science 
[3]. Yet, it can be argued that the pursuit of novel structural methods has obscured the 
steady experimental and theoretical development of the oldest surface structural technique; 
low-energy electron diffraction (LEED). 

The birth of quantitative surface crystallography coincided with the first reports of 
surface structures solved by LEED that appeared in the literature in the early 1970s [4- 
61. Since that time, the number of published surface structure determinations has risen 
steadily and a recent compilation of solved surface structures [7] contains almost 400 
entries. Yet, despite the challenge of other structural methods such as ion scattering and 
scanning tunneling microscopy (STM), LEED accounts for approximately 70% of all solved 
surface structures and over 40% of all new structure determinations. The historic record 
demonstrates clearly that LEED remains the technique of choice for the retrieval of surface 
crystallographic information. 

The last decade has seen important developments in both the theoretical and 
experimental components of the LEED technique. Whilst the experimental advances should 
not be underestimated [SI, this review will focus upon one theoretical advance; the tensor 
LEED approximation. The tensor LEED (or TLEED) approximation has been the subject of 
an earlier review [9], which focused, in detail, upon the theory of the method and its 
early applications to specific surface structure determinations. Another recent tutorial [IO] 
has reviewed the application of TLEED within the context of automated surface structure 
determination. This review will concentrate upon the basic physics of the tensor LEED 
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approximation and how the concept of tensor LEED has been used as the theoretical 
foundation for the development of novel approaches to surface crystallography such as 
chemical and thermal tensor LEED. This is one of the most important areas of development 
of the theory of tensor LEED over the last three years. 

Although this review does contain a brief description the theory of tensor LEED (Em), 
more detailed expositions of the theory and the motivation behind its development can be 
found elsewhere [11-15]. It is not within the scope of this contribution to review the full 
dynamical theory in LEED. Instead, we refer the reader to several recent review articles 
[16-181 and books [19-221. 

The organization of this review is as follows. In section 2 we briefly discuss the 
fundamental concepts necessary to understand surface structure determination by LEED. In 
section 3 we briefly describe the theory of linear tensor LEED and the more sophisticated 
version of the theory, tensor LEED. Also in section 3 we discuss the radius of convergence 
o€the technique and the physical origins of the breakdown of the approximation. Particular 
emphasis is placed upon the classification of multiple scattering correlations. In section 4 we 
explore the efficiency of the tensor LEED approximation by examining its scaling behavior 
in comparison to full dynamical methods. Section 5 describes briefly how tensor LEED has 
been combined with various optimization strategies. In section 6, we tabulate the recent 
applications of tensor LEED to the solution of unknown surface structures. Section 7 reviews 
the ways in which tensor LEED theory has been used as the basis of novel techniques in 
surface crystallography by LEED. 

2. Structure determination by LCED: basic concepts 

All electron-based surface structural techniques achieve surface sensitivity by exploiting the 
short mean free path (5 10 A) of low-energy electrons (30 to 500eV) within solids [22], a 
consequence of strong inelastic scattering. Therefore, information retrieved from electrons 
elastically scattered from a solid must be sensitive to the local atomic arrangements at the 
selvedge. However, any realistic theory of electron scattering at surfaces, and certainly any 
theory capable of providing any degree of structural accuracy, must be capable of modeling 
the strong electron-atom scattering that occurs in this energy range. Typically, the electron 
scattering cross section of an atom seen by a low-energy electron is of the order of 1- 
IO.&’. Since this value is similar to the physical cross-sectional area of an atom, mulriple 
scattering among the surface atoms is expected to be of critical importance in determining 
the amplitude of the scattered electrons. Therefore, the extraction of shuctural information 
from the low-energy electron diffraction data requires an adequate theoretical model of the 
effect of multiple scattering. 

For LEED, the structure determination employs a calculation of the propagation of 
electrons within the surface of a solid to extract the positions of the surface atoms from 
a set of measured intensity versus energy ( I V )  spectra corresponding to each Bragg beam 
diffracted from the surface. This procedure suffers from two computational bottlenecks that, 
until recently, greatly restricted the complexity of surfaces that could be investigated by the 
LEED technique. The first bottleneck was the amount of CPU time required to calculate the 
IV spectra from a single mal surface structure for comparison with experiment. If we 
quantify the complexity of the surface structure by counting the number of inequivalent 
atoms within the surface unit cell, N ,  then the crudest summation of the multiple scattering 
paths takes an amount of time that scales as N’. This cubic scaling is characteristic of the 
numerical matrix inversions needed to sum exactly the multiple scattering paths travelled 
by each scattered electron. These operations represent the dominant contribution to the total 
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CPU-time expended by a LEED calculation for a single surface structure. 
The optimum scaling of the CPU time for a LEED calculation would be linear in N .  This is 

the scaling exhibited by a kinematic calculation that neglects multiple scattering. However, 
single scattering is never a good approximation for LEED. Therefore, until the mid-1980s the 
bulk of the developments in LEED theory concentrated upon how to optimize the scaling of 
the CPU time for a single LEED calculation. This period saw the development of a number 
of reliable approximations to full multiple scattering [21], including renormalized forward 
scattering [22], reverse scattering perturbation [20-241, quasidynamical LEED [25-271, the 
beam set neglect method [21, 281 and the exploitation of symmetry [29]. 

At its inception in the mid-l980s, the tensor LEED approximation was a similar attempt 
at optimizing the scaling of a single LEED calculation. In fact, within its range of validity, 
the TLEED approximation can provide computational times that scale almost linearly with 
N. Although it was developed within this context, T E E D  has had an important impact upon 
the second, and in many ways more serious, bottleneck in the LEED technique that occurs 
when the calculated LEED I V spectra are compared to the measured spectra. This is the 
so-called structure search. Until the late 1980s, the optimum surface structure was selected 
by trial-and-enor comparison of experimental and calculated spectra from a sequence of 
possible trial structures [Zl]. However, the time taken to perform an exhaustive search scales 
exponentially with the number of varied parameters, M (i.e. t a CM). Consequently, as 
Pendry has indicated [30], the exhaustive LEED search belongs to the class of non-polynomial 
or NP-complete optimization problems for which the computational effort required to locate 
the structural solution is not bounded by a polynomial in M. As we shall demonstrate 
later in this review, even significant improvements in the speed of computer hardware 
have little impact on the size of NP-complete problems that can be solved by exhaustive 
searching. This problem has been alleviated by combining the tensor LEED approximation 
with automated optimization algorithms (ATLEED) and by extensions of tensor LEED theory 
such as linear LEED (LLEED). 

Within this contexr it should be noted that, whilst developments in digital computer 
hardware have increased both the computational cost-effectiveness and the convenience of 
LEED structure determination, hardware advances alone are responsible for only a relatively 
modest increase in degree of structural complexity of surface structures that can be solved by 
LEED. In arecent review, Duke [31] has pointed out that the (dollar) cost of a full dynamical 
solution of the GaAs(ll0)-p(1 x 1) surface has decreased by a factor of approximately 40 
in the period between 1976 and 1992. Yet even such a dramatic increase in hardware 
efficiency leads to only a rather modest increase in the complexity of structures that can be 
solved because of the non-linear scaling of the dynamical LEED calculation with the number 
of atoms in the surface unit cell, N .  If we assume that in 1976 a state of the art LEED 
calculation was for an elemental metal surface ( N  = 1). by 1992 hardware advances alone 
would allow us to solve surface structures with at most N = 4 atoms in the surface unit cell. 
This assumes that the dominant scaling behaviour of a LEED calculation is N 3 ,  in reality 
the scaling of the entire structure search is much more unfavourable. In 1992 Van Hove et 
al published perhaps the most complex surface structure determination to date, Rh(1 11)- 
(2 x 2)-CzH3, a structure with no fewer than 31 determined parameters [32]. By waiting 
for hardware advances alone, this structure could not have been solved until approximately 
2016! Instead this complex structure determination was made possible by advances in the 
theory of LEED and, in particular, the use of the tensor LEED approximation coupled with 
an automated search algorithm. This comparison demonstrates that the past and future 
advances in the complexity of LEED structure determinations lie in the development of new 
theories; not from a patient wait for advances in digital computer technology. 
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3. The theory of tensor LEED 

3.1. Introduction 

Prior to the mid-l980s, and the development of the tensor LEED approximation, the majority 
of the successful approximation schemes in LEED could be classified as methods that 
neglected certain contributions to multiple scattering. In the kinematic limit, the CPU time 
required to compute the diffraction specIra, scales linearly with the number of inequivalent 
atoms in the surface unit cell. This is because the structure factor is simply a sum over 
phase factors; one for each atom. When multiple scattering is important, all possible 
propagation paths that link together the N atoms must be summed to compute the total 
scattered amplitude. This is a numerical operation that scales as N 3 .  The success of 
approximation schemes developed prior to 1986 lay in the choice of a convergent partial . 
summation over a sub-set of all the multiple scattering paths. For example, both RFS 
and RSP exploit the strong forward scattering of low-energy electrons by surface atoms 
to develop an expansion of the LEED amplitude truncated to low order in the number of 
backscattering events. 

The conceptual foundation for tensor LEED theory is fundamentally different. Instead of 
developing an approximation to a full dynamical calculation for each trial surface structure, 
we attempted to develop a perturbation scheme that started with the results of a full 
dynamical calculation. The key motivation for tensor LEED was the realization that the 
most time-consuming part of any LEED structure determination is the evaluation of LEED 
I V  spectra, repeated perhaps hundreds of thousands of times, once for each trial surface 
structure that is compared to experiment. However, in most cases, each of these trial surface 
structures differed from one another by only small displacements of the surface atoms. What 
was needed was a computationally efficient means of re-evaluating LEED I V  spectra from 
distorted versions of a given surface structure, a task that was clearly suited to a perturbative 
approach. 

3.2. Linear tensor LEED theory 

We start with a full-dynamical calculation for a particular surface structure called the 
reference structure. Since this reference calculation includes full multiple scattering 
corrections, it exhibits the usual, unfavourable, N 3  scaling of computational effort with 
the number of atoms in the surface unit cell. The reference calculation computes not only 
the I V  spectra but also the electron wavefunction within the reference surface, Y~,(T), that 
is produced by an incident beam of electrons with energy, E ,  and arbitrary momentum, kll, 
parallel to the surface. Since the muffin-tin approximation is used, the electron wavefunction 
in the interstitial region, just outside each surface atom, TI, can be expressed as a spherical 
wave expansion, 

'J'ko(pP) =CBem@i l )  [jr(KIr-rjI)+sh::(KIT--jI)] YtmO). (3.1) 
Lm 

The spherical wave coefficients,Btm(ku), can be determined directly from the reference 
structure LEED calculation and te is the usual atomic t-matrix. 

We now consider how to approach the re-calculation of the Iv spectra for a different 
trial structure where the atomic positions differ only slightly from those of the reference 
surface. The conventional approach would be to re-run the full dynamical calculation for 
the new set of atomic positions; an N 3  process. However, if the displacements of the 
atoms are, in some sense, small, then a perturbative approach can be taken. The most 
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elementary treatment, which is valid for the smallest displacements, computes the change 
of the potential generated by moving the j th  atom through a distance S r j :  

SV; Y 6 r j .  VV; (3.2) 

where VY is the gradient of the surface potential evaluated at the position of the jth 
atom. A straightforward application of first-order perturbation theory yields the change in 
the amplitude, SA, of electrons scattered by the surface with parallel momentum kll + g: 

SA,(kn) Y CW~~~+~ISYIQ~, ) (3.3) 
j 

where g is a reciprocal lattice vector corresponding to a particular Bragg reflection. 
Equation (3.3) may be evaluated by noting that 

(3.4) 
This is the electron wavefunction generated by an incident electron beam impinging upon the 
surface with parallel wavevector -(!q +g). This quantity can be computed by performing 
a 'timereversed' reference calculation for an incident electron beam parallel to -(!q +g) .  

The matrix element of equation (3.3) can be evaluated in an angular momentum basis. 
The angular integral is straightforward, the radial integral can be expressed in terms of the 
atomic phase shifts of the atom that is displaced: 

1 R , * ( r ) T  Re+l (r)dr = exp[i(&'+l -831 sin(8; - S2+l). 

This well known result originates from the theory of the electron-phonon interaction 1331 
and similar matrix elements to that of equation (3.3) are employed in the theory of phonon 
scattering in high-resolution electron energy-loss spectroscopy (HREELS) [34-36]. 

If we now combine equations (3.2) and (3.3) and consider the possibility of displacing 
j = 1,. . . N ,  atoms, we find that the change in the amplitude of any L E D  beam can 
be written as a sum over the three Cartesian coordinates of each atomic displacement 
(i = x ,  y ,  z): 

(%,+el4 = ((TI*ku+,))* = ( r lY-(k l l+d)  

N 3  

SA, % z2$r j j  (3.5) 
j-1 i=, 

where 7 is a Cartesian tensor: 

?;j Zj = ~ ~ ~ l l + g l V x ~ l ~ ~ l l ~  

Zj =?;j = W k B + g l V y ~ l ' k I l )  (3.6) 
'&j =Zj = (wk,,+glVzYl'J"ku). 

The sum i = 1 to 3 is taken over the three Cartesian coordinates of each atomic displacement. 
Equation (3.5) is the mathematical expression of the simplest version of the tensor 

LEED approximation called linear tensor  LE^. It represents a highly efficient means of re- 
evaluating ZV spectra from (small) distortions of the reference structure. The reference 
calculation is needed to compute the tensor 7 including full dynamical corrections. 
However, once this is done, the LEED beam amplitudes and ZV spectra from a distortion of 

'this surface can be rapidly evaluated by summing equation (3.5). This approach yields an 
approximate calculation of the IV spectra for distortions of a reference structure at a rate 
that scales Linearly with the number of atoms displaced; the optimum scaling for a LEED 
calculation. In practice the CPU time required for the trial structure calculations is negligible 
compared to that required for the reference surface. 



8 108 P I Rous 

3.3. The radius of convergence of linear tensor LEED 

Linear tensor LEED is, of course, only an approximation to a fully dynamical calculation. 
Consequently, we define a radius of convergence for the approximation: a length that 
represents the typical distance atoms may be displaced from their positions in the reference 
surface whilst retaining sufficient accuracy to determine the atomic positions within the 
error bars of a L E D  analysis (typically f0.05 A). Using this definition we anticipate that 
the results of a fully dynamical and a "LEED analysis of a given surface structure will 
agree within the error bars of the analysis, provided atoms are not moved outside of the 
radius of convergence of the TLEED approximation. Note that this definition does not imply 
that the IV spectra calculated by n E E D  are identical to those computed by full dynamical 
calculation. Instead this definition implies that there is no loss of structural information 
when the TLEED approximation is used within its radius of Convergence. 

There are two assumptions made by linear TLEED that lead to a finite radius of 
convergence. First, we have made the assumption that the change in the potential, SV, 
and the change in the LEED amplitude, SA, are accurately represented as a Taylor series 
expansion truncated at first order in 6r: 

(3.7) 
This is true only if the displacement Sr is sufficiently small. Since this is an approximation to 
the local perturbing potential, its validity is independent of the degree of multiple scattering. 
Consequently, a kinematic model suffices to estimate how well the changes in the LEED 
amplitudes are represented by the linear TLEED approximation for the potential. 

Consider a small displacement, br, of a single atom, form factor f ,  in the single 
scattering limit. The change in the scattered amplitude corresponding to momentum transfer 
( k  - k') is 

S A = f e x p [ ( l c - l c ' ) . ( r + 6 r ) l - f e x p [ ( l c - k ' ) . ~ ]  - [  ( k - k ' ) . 6 r + 0 ( S r 2 ) . . . ]  . 

SV, zz 6rj . V V j  + 0 (ST;) . 

(3.8) 
This linear expansion fails when (k-k') .6r < 2 ~ S r  becomes significant compared to unity. 
It follows that, for a typical set of normal-incidence IV specIra where 30 < E < 300eV 
and I(k - k')l % k, the largest displacement is limited to Sr 5 0.35 A at 30eV and 
Sr 5 0.10 8, at 300eV. This suggests that the radius of convergence of the linear tensor 
LEED approximation is not greater than approximately 0.lA. Further, it is interesting to note 
that the validity of the linear tensor L E D  approximation depends not only upon the change 
of the on-site potential but also upon the momentum transfer corresponding to the diffraction 
of the LEED beam. This is consistent with the interpretation of the RHS of equation (3.3) 
offered by the Hellmann-Feynman theorem; it is proportional to the force exerted on the 
undisplaced atom by the electrons scattered along k11 + g. 

The second approximation made by the linear tensor LEED approximation is the 
assumption that an electron does not experience the perturbation of the potential produced 
by any displaced atom more than once. This implies that, in linear tensor LEED, the multiple 
scattering paths are summed to all orders in the V, but only to first order in Sq. In other 
words, the change in potential is sufficiently small that contributions to SA from terms 
containing products such as SV;.SV,, can be neglected in this version of TLEED. The validity 
of this assumption requires that the perturbing potential at each atomic site is so small that 
there is negligible multiple scattering between the 8 5 .  Since, at LEED energies, strong 
multiple scattering occurs between the full atomic potentials V,, a necessary condition for 
the validity of linear TLEED is that 65 < 5. Note that, in the kinematic limit, this 
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approximation becomes exact and therefore the only limitation is the representation of the 
perturbation of  the scattering potential. 

Displacement of top layer (Angstroms) 

Figure 1. The absolute change in amplitude, [SA[, of the [I  OJ beam scattered from a Cu(l00) 
surface for an incident electron energy of 30~eV. The change in amplitude (a) is shown as a 
function of the displacement of the entire top layer of atoms with respect to the iayer position 
in the bulk termination of the solid. Negative values of d correspond to a conmaion of the 
first interlayer spacing. The electron beam was incident normal to the surface. 

Displacemenl of top layer (Angstroms) 
3 

Figure 2. The absolute change in amplitude, /6AI, of the [I 01 beam scattered from a W(100) 
surface for an incident e l e m n  energy of 30eV. The change in amplitude (a) is shown as a 
function of the displacement of the entire top iayer of atoms with respect to the layer position 
in the bulk termination of the solid. Negative values of d correspond to a contraction of the 
fir$ interlayer spacing. The electron beam was incident normal to the surface. 

Failure of either of these approximations will cause the change of amplitude, 
equation (3.3), to deviate from its linear dependence upon the atomic displacements. 
Consequently, the validity of the linear version of TLEED may be explored by computing the 
change of amplitude including full dynamical corrections and looking for deviations from 
linearity as a function of the magnitude of an atomic displacement. Figures 1, 2 and 3 show 
the change in scattered amplitude, AA, evaluated as a function of the distance d that the 
top layer of atoms was displaced into and out of several clean, elemental, surfaces. Results 
are shown for incident electron energies of 30eV for Cu(lO0) and W(100). and 200eV 
for Ni(lO0). For both Cu(l00) and W(100) at 30eV, it is clear from figures 1 and 2 that 
the change in amplitude 6A is linear in the planar displacement, d. for distances smaller 
than 0.4 A. At 200eV, the results for Ni(lO0) in figure 3, also show linear behaviour but 
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Displacement of lap layer (Angstroms) 

Figure 3. The absolute change in amplitude, ISAI, of the [OO] beam scattered from a Ni(lO0) 
surface for an incident eleclron energy of 2OOeV. The change in amplitude (e) is shown as a 
function of the displacement of the entire top layer of atoms with respect to the layer position 
in the bulk termination of the solid. Negative values of d correspond to a contraction of the 
first interlayer spacing. The electron beam was incident normal to the surface. Note the linear 
dependence of the change in amplitude upon the displacement ford C 0.2 A. 

for a smaller range of displacements, less than about d = 0.2 A. These upper limits of the 
magnitudes of the atomic displacements are quantitatively consistent with the magnitudes 
predicted for the failure of the linear representation of the potential, discussed earlier in 
this section. 

Further evidence for the failure of the description of the potential being the cause of 
the breakdown of the linear TLEED approximation may be seen by comparing the W( 1 0 0) 
and Cu(lO0) examples for an incident electron energy of 30eV. It is well known that W is 
an extremely strong scatterer of LEED electrons, especially at low energies. The calculated 
scattering cross section of W at 30eV is uw = 5.6Az compared to uc. = 0.5Az. Thus 
at 30eV we expect significantly greater multiple electron scattering in W(100) than in 
Cu(l0 0). Consequently, if multiple scattering correlations were the limiting factor for the 
linear tensor LEED approximation, then the radius of convergence for W( 1 0 0) should be 
significantly smaller than for Cu(lO0) at 30eV. Since this is not the case, we conclude that 
multiple scattering correlations between displaced atoms are not the limiting factor in the 
linear TLEED approximation. The physical reasons for the relative unimportance of multiple 
scattering correlations will be discussed later in this review. 

3.4. Tensor LEED fheory 

Our analysis of the failure of linear TLEED suggests that the radius of convergence of 
the approximation could be extended by improving the on-site representation of electron 
scattering by a displaced atom. This more sophisticated approach, called simply TLEED, is 
outlined in this section. 

In linear TLEED the perturbation of the potential corresponding to a single atom, caused 
by a displacement Sr, is evaluated approximately by taking only the first order term in the 
Taylor expansion of the distorted potential. Instead, the effect of this perturbation upon the 
electron scattering at a single atomic site may be evaluated exactly, at least within the rigid 
muffin-tin approximation. Rather than considering the change in the potential we compute 
the change in the scattering r-matrix of the displaced atom. To do this we employ an angular 
momentum basis and use the translation theorem for spherical waves. 

Consider the scattering t-matrix of an atom situated at the origin. This quantity may be 
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Figun 4. A schematic illustration of how the displacement of an atom can be considered as a 
distortion of the atomic scattering matrix. The left panel shows an incident plane wave scattered 
into a spherical wave originating at the centre of an atom. The right panel shows how the 
scattering by a displaced atom can be expressed in terms of spherical waves centred upon the 
original position of the atom. 

expressed in terms of the usual scattering phase shifts St: 

re = iexp(i6e)sinSe. (3.9) 
If the atom is displaced then either we can use this t-matrix at the new position of the atom, 
or we can incorporate the effect of the displacement directly into the atomic t-matrix. 

(3.10) 

It should be understood that the perturbed t-matrix is referenced to the undisplaced position 
of the atom (i.e. the origin). From the point of view of the electron scattering states, this 
approach is advantageous because the origin of the spherical wave expansion of electron 
wavefunction in the vicinity of the atom remains unaltered  when^ the atom is moved. 
Instead the atomic displacement introduces off-diagonal elements into the t-matrix that now 
represents the non-central potential of the displaced atom. This is illustrated schematically 
in figure 4. 

In an angular momentum basis, 6 t  can be computed for each displaced atom in the 
reference surface by using the translation theorem for spherical waves [37]. Then, the 
change of the amplitude of the LEED beam diffracted with parallel wavevector lcll is obtained 
by replacing equation (3.3) with 

2 = t + 6t(ST) .  

(3.11) 

Inserting a complete set of angular momentum states (em1 on either side of the S t j  in 
equation (3.11), we find the analogous expression to equation (3.3) for the change in 
scattered amplitude: 

(3.12) 

This expression is correct to all orders of ST since Stj represents the exact change in the 
on-site potential produced by displacing the jth atom. 

It is instructive to compare the change in the scattered amplitude calculated using 
the linear TLEED approximation, equation (3.3), and using the TLEED approximation 
equation (3.12). In the linear approximation, the change in the amplitude is the product of 
a tensor and the actual atomic displacement, summed over the three Cartesian coordinates 
and the displaced atoms. In the more sophisticated version of the theory, equation (3.12). 
the amplitude change is the product of a tensor with the change in the on-site t-matrix, 
summed over all angular momentum components and over all of the displaced atoms. The 
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Displacement of top layer (AngsUoms) 
Figure 5. The absolute change in amplitude, ISAI, of the 11 01 beam scattered from a Ni(l00) 
surface for an incident electron energy of 2OOeV. The change in amplitude is shown as a function 
of the displacement of the entire top layer of atoms with respect to the layer position in the bulk 
termination of the solid. Full dynamical calculation (e) and n E E D  approximation are shown (0). 

link between the first and second versions of the TLEED approximation can be established 
by substituting into equation (3.11) the expression for S d  evaluated in the first Bom 
approximation; S f j  = CtSVjC:, thereby yielding equation (3.5). 

In both versions of the TLEED approximation, the tensor 7 depends only upon the 
properties of the reference surface. In the more sophisticated version of the TLEED 
approximation, the atomic displacements, 6rj do not appear explicitly in the formula 
for the change of amplitude. Instead, the SC are functions of the atomic displacements. 
Nevertheless, once the reference structure calculation has been performed, it is only 
necessary to recalculate the S t  for each trial structure. Whilst it is obvious that the evaluation 
of the S t  is more a computationally costly procedure than the calculation of the atomic 
displacements, the scaling of this version of the approximation is still linear in the number 
of displaced atoms. 

Figure 5 shows a comparison of the more sophisticated version of the TLEED 
approximation and a full-dynamical LEED calculation for an example discussed in the 
previous section, Ni(100) for an incident electron energy of ZOOeV (see figure 3). In 
figure 5, the change in the scattered amplitude, SA, was evaluated as a function of the 
displacement of atoms into and out of the top Ni layer. Clearly, even at ZOOeV, the TLEED 
approximation accurately reproduces the change in amplitude for atomic displacements as 
large as 0.4 A. Thus it is apparent that the second version of TLEED extends the validity of 
the approximation significantly beyond that of linear tensor LEED. 

3.5. The radius of convergence of the TLEED approximcion 

The radius of convergence of T L E D  has been determined empirically from applications of 
the technique to the analysis of actual LEED data. There have been numerous comparisons 
between full-dynamical and TLEED calculations of IV spectra for many different surface 
structures [l l ,  13, 38, 391. The reader is referred to the published structure determinations 
listed in table 1 (section 6)  that contain specific examples of the applications of TLEED. 
In this section, we will confine the discussion to analysis of the physical reasons for the 
success of the approximation and its limitations. 

For atomic displacements outside its radius of convergence, the more sophisticated 
version of TLEED breaks down. In the case of linear TLEED, the breakdown of the method 
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was attributed to a failure of the approximation to describe correctly the potential of the 
displaced atom. This cannot be the reason for the failure of the TLEED approximation, since 
the change in potential is represented exactly provided the change in the atomic t-matrix is 
calculated accurately. As an aside, it is useful to clarify at this stage of the discussion what 
is meant by an exact evaluation of St.  This is because, in reality, some approximations are 
made in the evaluation of this quantity. However, we shall see that these approximations 
do not play a role in determining the radius of convergence of nm. 

First, when evaluating St we employ the rigid muffin-tin approximation (RMTA) and 
displace the entire muffin-tin potential of an atom to its position in the trial surface. 
Compared to a fully self-consistent calculation of the atomic scattering. the RMTA is an 
approximation since displacing the atom alters the valence electronic charge density in 
i ts vicinity. However, all state-of-the-art full dynamical L E D  calculations employ atomic 
phase shifts derived from bulk or cluster calculations and take no account of the change of 
atomic scattering as the atom is moved within the surface. Consequently, although the use 
of the rigid muffin-tin approximation is an approximation to the true surface potential, it 
is an approximation that is also made by full dynamical calculations for the same surface 
structure. The only circumstance where problems can arise is when there is significant 
overlap of the muffin& potentials of nearest-neighbour atoms, caused by displacing one 
atom in the reference surface towards another. In this case, either the muffin-tin radius of 
the atom in the reference surface must be adjusted, or a new reference structure chosen that 
is more closely related to the trial structure. 

The second approximation made in the calculation of 62 is the truncation of the angular 
momentum expansion used to represent the quantity. A typical LEED calculation employs 
sufficient (em) values to describe accurately the atomic scattering. Typically, one uses a 
semi-classical rule of thumb, e,,,= > m R ,  where R is the muffin-tin radius of the atom. 
When the atom is displaced by an amount 6r,  the perturbed t-matrix t + S f  now represents a 
region of scattering that is slightly larger than that of the undisplaced atom. Consequently, 
a slightly larger number of angular momentum components are needed to describe the 
scattering from the displaced atom. Since in all L E D  calculations emax is fixed at an energy 
independent value, the effect of the truncation of the angular momentum expansion used 
to represent 6t  is most apparent at high electron energies. Consequently, when TLEED is 
employed, care must be taken to include a sufficiently large angular momentum basis to treat 
the largest displacements. Provided this is done, the atomic scattering in the trial surface is 
represented as accurately as that of atoms in the reference structure. 

If these precautions are taken, then the origin of the failure of the TLEED approximation 
is the appearance of multiple scattering correlations between displaced atoms. As the 
change in t-matrix, St ,  becomes significant in comparison to the full atomic t-matrix, 
multiple scattering between displaced atoms begins to make a significant contribution to 
the scattered intensity. 

The importance of multiple scattering correlations can be seen by considering the 
multiple scattering paths contributing to the scattered intensity. In the reference surface 
the propagation of an electron between an atom pair (i. j )  can be represented by the full 
Green function G;j for the reference surface: 

G; = G:. + G ? , ~ G ; ~  + x-x G ? ~ v ~ G & ~ G : ~  + . . . . (3.13) 
k k t  

Here G$ is the free-space Green function that describes the free propagation of LEED 
electrons within the reference surface from atom i to atom j .  Since a full dynamic& 
calculation is performed for the reference surface, the full Green function linking every 
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atom pair is computed exactly, i.e. equation 3.13 is summed to all orders in V .  This must 
be done because the strength of the atomic potentials VI means that this series cannot be 
truncated at a low order in V .  

We now consider a trial surface where some atoms have been displaced from their 
positions in the reference structure. The full Green function for the trial surface is 

(3.14) G!.  ‘ I  = G?. ,I + AGij 

AGij = C G ; G h C L j  + z C G ; G V k C ; , 6 V c G ; j  +.... 
where 

(3.15) 

Although the multiple scattering series for G;j must be summed exactly, the series for AGU 
can be truncated if 6V is sufficiently small compared to V .  In the TLEED approximation, 
AGjj is summed only to first order in 6V: 

(3.16) 

This approximation will fail, and the radius of convergence will be reached, when 6V 
becomes so large that higher-order terms in equation (3.16) become significant. 

Physically, these higher-order terms in the multiple scattering expansion for AGjj may 
be classified into two types: those paths on which an electron returns to the same displaced 
atom more than once (closed paths) and those that do not (open paths). A schematic 
illustration of these multiple scattering paths can be seen in figure 6. It can be argued 
that contributions to the scattered ,,intensity from scattering paths on which an electron 
returns to the same displaced atom more than once are of significantly less importance than 
open paths. This is because closed loops represent a small proportion of the total number 
of possible scattering paths and on such paths an electron must undergo backscattering 
from the atoms surrounding the displaced atom. At LEED energies, backscattering is a 
weak process compared to forward scattering by atoms, an argument that is used to justify 
the neglect of multiple scattering correlations between displaced atoms in the theoretical 
treatment of lattice vibrations in L E D  [22] and disordered alloys [40]. Consequently, we 
argue that the radius of convergence of the TLEED approximation is largely determined by 
its failure to represent correctly multiple scattering correlations between displaced atoms 
and, in particular, the open scattering paths on which electrons are scattered by two distinct 
displaced atoms. 

k k e  

A G ; ~  Y CG;,SV~G;~ +o(6v2) +. ... 
k 

Opcn paths Closcd palhs 
Figure 6. A schematic illusualion of the multiple scattering paths within a Oial surface. These 
paths are classified into open paths of the type shown in the left panel and closed paths shown 
in the right panel. 

Our andysis of the origin of the failure of TLEED allows us to understand the variation of 
the radius of convergence between different surfaces. Early applications of TLEED showed 
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that the radius of convergence was approximately 0.4 A for elemental surfaces such as Ni 
and Cu. However, it should be recognized that this is not a universal value. Since the 
magnitude of 6V for a displaced atom is dependent upon the strength of the (unperturbed) 
atomic potential, we expect a correlation between the scattering cross section of a surface 
atom and the radius of convergence of TLEED when it is used to displace the atom. This 
is what is found empirically. For materials in the middle of the periodic table, such as 
NI, Cu, Pd, MO and Rh, the radius of convergence is found to be close to this value, 
0.4 A . However for heavier materials, such as W, the radius of convergence shrinks to 
approximately 0.3 A . For Pt it is closer to 0.2 A . By contrast, for lighter atoms, such 
as C, N, 0 and H, the radius of convergence expands beyond 0.5 A . These results are 
consistent with an inverse relationship between the scattering cross section of the atom and 
the radius of convergence of the TLEED approximation. This follows from the general, albeit 
non-monotonic, increase in the atomic scattering cross section with atomic number as one 
descends the periodic table. 

In addition to being correlated with the strength of the atomic scattering, the importance 
of open multiple scattering paths in limiting the radius of convergence of the approximation 
implies that the success of n E E D  for a particular surface structure should also depend on 
the relative position of displaced atoms. The radii of convergence quoted~above are for the 
(worst) cases where TLEED was used to consider multilayer relaxations where all the atoms 
in a single atomic plane are moved in concert. In these cases the displaced atoms are nearest 
neighbours and multiple scattering correlations between displaced atoms are maximized. 

If displaced atoms are further apart than the electron mean free path, then multiple 
scattering correlations between these atoms will never become significant. In this case, the 
approximation fails only when there is significant multiple (back)scattering along closed 
paths that link the same atom. Because of the relative unimportance of these closed paths 
compared to the open paths, we anticipate that the radius of convergence of TLEED is 
extended when displaced atoms are far apart. Further, if the (back)scattering correlations 
could be included in the perturbation series then, when displaced atoms are far apart, the 
approximation could remain valid for significantly larger displacements than TLEED. These 
backscattering paths are included in the linear LEED method recently proposed by Wander 
et a1 [41]. Linear LEED, and its relationship to TLEED will be discussed in section 7.2. 

4. The efficiency of tensor LEED 

The fundamental advance offered by TLEED theory, in either of its implementations, is 
that, once a reference structure calculation has been performed, the CPU time required 
to evaluate IV spectra from a trial surface structure scales linearly with the number of 
displaced atoms. Thus, if we compare the CPU time required for a TLEED (c( N) and a full 
dynamical calculation (a N3) ,  we expect a reduction in CPU time of at least a factor of 
N 2 .  This is very significant time-saving even if TLEED is used to move only a few atoms. 
Further, the simplicity of the numerical operations required to compute the I V  spectra from 
distortions of the reference surface means that the TLEED calculation is very fast compared 
to conventional full dynamical methods. For example, by using TLEED theory the CPU time 
expended per trial structure can be reduced by a factor of 50 for simple elemental surfaces 
such as Cu( 1 0 0), even though N = 1 in this case. 

However, even this analysis of the efficiency of the method greatly underestimates the 
potential time savings offered by TLEED when it is applied to complex surfaces. In contrast 
to conventional LEED calculations that exploit time-saving symmetries. the time taken to 
evaluate intensities by TLEED is independent of the degree of symmetry within any given 



8116 P J Rous 

trial structure. One can consider highly asymmetric systems with no loss of efficiency. 
Therefore, it is possible to select a reference structure that is highly symmetric (and may 
be efficiently treated by full dynamical methods) and then use n m D  to distort this surface 
into a structure that possesses significantly fewer symmetry elements. 

If only a few trial structures are considered, the CPU time required for the entire structure 
determination will be dominated by the N 3  scaling of the reference structure calculation. 
However, except for the simplest elemental surfaces, most structure determinations 
investigate a very large number of trial surface structures (often several hundred thousand 
structures). In these cases, the scaling of the CPU time is dominated by the time taken to 
perform the trial structure calculations, which scales linearly with the number of displaced 
atoms. In these cases, the TLEED approximation has optimized the scaling of the time 
taken to perform the LEED calculations for each trial structure. Whilst this removes the 
first computational bottleneck discussed in section 2, it leaves the other in place: the 
exponential scaling of the number of trial structures needed to perform a trial and error 
search of parameter space. This difficulty has been overcome by combining REED with 
automated search strategies and is discussed in the next section. 

5. T E E D  and automated search strategies 

5.1, Introduction 

The use of automated search algorithms has been the subject of a recent review [lo], and the 
various optimization methods will not be discussed in detail here. Instead we will confine 
the discussion to the motivation for and development of such methods using TLEED. 

The search problem in surface crystallography by (LEED) may be stated concisely as 
follows: given a set of experimental ZV spectra and a means of calculating I V spectra from 
any trial surface structure, how does one determine the actual surface structure? Typically, 
one proceeds by using an R-factor that measures the mismatch between the experimental 
and calculated ZV spectra for each trial surface structure [21]. One then employs a 
search strategy to find the set of structural and non-structural parameters that minimizes the 
disagreement between the calculated and measured IV  spectra. This approach transforms the 
crystallographic determination into the standard numerical optimization problem of locating 
the global minimum of a multi-dimensional R-factor hypersurface that spans the parameter 
space formed by the structural and non-structural variables. 

The time taken to perform such an exhaustive search of parameter space scales 
exponentially with the number of varied parameters, M .  Consequently, even significant 
improvements in the speed of computer hardware make little impact on the size of NP 
complete problem that can be solved by exhaustive searching. For example, as was noted 
in the introduction, the cost of the LEED structure determination for GaAs(l10) ( M  2: 8) 
in 1992, $40, has decreased by a factor of 40 in the period between 1976 and 1992. If 
we extrapolate this example to the case of the Rh(1 11)-(2 x Z)-C*H, (M zz 30) surface 
considered earlier, then we find that the cost for the solution of this structure is no less 
than $1,000,000. This is a consequence of the exponential scaling of CPU timdcost with 
the number of fitted parameters. 

5.2. Local and global search methods 

Over the last five years, there have been several applications of local directed search 
methods to the LEED structure seach [10,4245]. These methods improve the efficiency 
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of the’structure search by exploiting the local topography of the R-factor hypersurface. 
These techniques are fully or partially based upon descent methods and attempt to convert 
the M-dimensional search into a sequence of M one-dimensional line searches. Cowell 
et a1 implemented the first gradient search method using full-dynamical calculations of 
ZV spectra for comparison with experiment [42]. The Munich group has implemented a 
gradient-expansion method using fully dynamical calculations 143, 441. 

The TLEED approximation has been combined with a local search method to explore 
rapidly the R-factor hypersurface in the vicinity of a reference structure [45]. All directed 
searches are launched from an initial point in parameter space and find the minimum of 
the cost function that is, in some sense, closest to the starting point. Clearly, TLEED is 
compatible with this type of search, since the search can be launched from the point in 
parameter space that corresponds to a reference structure and confined to a local region 
of parameter space within the radius of convergence of the approximation. Therefore it is 
possible to exploit the efficiency of both TLEED and the automated searching simultaneously. 

The automated TLEED (ATLEED) approach is illustrated in the flowchart of figure 7. The 
first program generates, and then stores to disk file, one tensor 7 for each energy point, 
for each observed beam and for each atom to be displaced from its reference position. The 
second program reads those tensors and calculates LEED 2 V spectra for a sequence of trial 
structures using the TLEED approximation. The I V spectra of each trial structure examined 
are immediately compared to the experimental spectra by an in situ R-factor calculation. 
A steepest descent method is used to choose the next trial structure from the results of the 
previous R-factor comparison. This procedure is repeated until the search converges at an 
R-factor minimum. 

This type of optimization procedure does not guarantee that the trial structure at the 
termination of the search is the best-fit surface structure: this structure may correspond to 
a local and not the global R-factor minimum. A heuristic, and oft-recommended, solution 
to the problem of global versus local minima is to launch multiple directed searches from 
different initial structures [IO, 451. Using this approach, it is hoped that all R-factor minima 
are located and therefore the global minimum may be selected from this list of minima. 
Only one full dynamical calculation is needed for each reference structure, so that the use 
of the TLEED approximation as the basis of the automated structure search results in large 
computational savings. 

However, it should be noted that this ‘divide and conquer’ approach simply converts one 
N P  complete problem to another, since the number of reference structures from which local 
searches must be launched still scales exponentially with the number of parameters varied. 
In practice, this does not appear to be a serious difficulty since descent methods have been 
quite successful empirically in  locating the best-fit structure in actual L6ED crystallographic 
studies using only a few reference structures [IO]. The physical reason for the apparent 
succeSs of descent methods can been seen in figure 8, which shows the distribution of R- 
factor values at the extrema~of local minima of the Ir(llO)-p(2x 1) surface. This distribution 
was calculated from exhaustive searches of 1 A3 of the Pendry R-factor hypersurface. We 
see that the majority (z 90%) of the local minima have R-factor values that are normally 
distributed about the mean. A fit to a Gaussian curve is shown by the full curve in this 
figure, which indicates that a deviation from the normal distribution occurs only for a 
small proportion of the minima (z 2%) that have R-factor values considerably smaller 
than the mean. 

The form of this distribution indicates that the normally distributed local minima arise 
from random fluctuations of Pendry R-factor as the structural parameters are varied. The 
statistical origin of this topographic feature is anticipated by the work of Pendry 1461. This 
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Figure 7. A flowchart for R-factor optiminlian by TLLEED. The reference SfNCture calculation is 
a self-contained prognm thaf generales the tensops T for the best guess StmcNre. The remainder 
of the calculation is prformed by a single program that combines the calculation of I V spectra 
by TLEU) and in situ R-factor optimization. 

model predicts that, in a region of parameter space where there is no physical, and only 
random, correlations between the trial and actual surface structure, the Pendry R-factor 
fluctuates with a standard deviation, (18, from the mean, (R), given by 

(5.1) 

Here Voi is the imaginary part of the potential in the surface (approximately half the peak 
width in the I V  spectra) and A23 is the total energy range of the experimental data-set. For 
the Ir(l10) case considered here the predicted ratio of the standard deviation of the Pendry 
R-factor to the mean given by equation (5.1) is 0.15, a value that is in excellent agreement 
with the results shown in figure 8. 

This analysis indicates that the majority of the local minima of the Pendry R-factor 
hypersurface (for the Ir(llO)-p(2 x 1) case at least) arise from random fluctuations. 
Furthermore, these random local minima are shallow and have relatively high R-factor 
values, which lie within ( 2 - 3 ) q  of the mean ((R) = 0.80). The minima that deviate from 
the Gaussian curve on the low-Rp side of the normal distribution have a different physical 

OR - (3v0 i fAE)"~ .  
( R )  



Tensor low-energy electron diffraction 

4 , , , , , , / , I  , I ,  

Ir( 110) p(2x1) 

8119 

3 
.2 

.g 2 

1 

C 
E .- 

- .  
d 0 
0 - v 

a i  

0 
0 0.2 0.4 0.6 0.8 1 1.2 

Pendry R-factor 
Figure 8. A histogram showing Lhe distribution of R-factor values at local minima of the Ir(l10) 
p(2 x 1) Pendry R-hctor hypersurface. The full curve is a least-squares fit Of the peak to a 
normal distribution with ( R )  = 0.80 and CR =0.12. 

the periodic satisfaction of the Bragg condition as each atom is displaced through half of 
the electron wavelength. Thus, the overall topography of the Pendry hypersurface may be 
described as having a few smooth deep valleys between relatively rough ‘highland’ regions. 
This result explains, in part, the success of local searches, which always proceed downhill 
from the launch point in parameter space. If a local search is launched from a point in 
parameter space that has an R-factor significantly below the mean (uncorrelated) value, 
then the majority of R-factor minima are avoided and most of the minima encountered 
are either the global minimum or diffraction coincidences. Nevertheless, in principle, the 
intrinsic difficulties associated with local search algorithms can be overcome with a global 
optimization method for LEED [47]  such as simulated annealing [48-511. 

Compared to exhaustive surveys, the automated (local) descent methods with REED 
greatly improve the scaling of the search effort with the number of parameters varied. 
An estimate of the scaling relation for descent methods can be obtained by noting that 
the location of the minimum of a single quadratic basin requires the evaluation of IV 
spectra from a number of trial structures that scales as M ( M  4- 1). Such scaling appears 
to be realized approximately in actual L E D  structure searches using gradient methods [lo], 
which are found to scale as M2. In addition, the TLEED calculations of the ZV spectra for 
each trial structure scale linearly with the number of displaced atoms. Since the number 
of structural parameters is often proportional to the number of displaced atoms (e.g. the 
position of N atoms is given by M = ~ 3 N  coordinates), then the overall scaling of ATLED 
is approximately cubic in the number of determined structural parameters. This is to be 
compared with an exhaustive search using full dynamical caIculations that scales as N3CM. 

An estimate of the scaling relation for a global search method, the simulated annealing 
(SA) algorithm has been obtained for the Ir(llO)-p(Z x 1) system in which four to six 
parameters were varied. The parameters included in the theory-theory comparison were the 
first three interlayer spacings and the row pairing and buckling of the top three Ir atomic 
planes parallel to the missing rows. For M = 4, M = 5 and M = 6, the total volume 
of parameter space explored was 1 A4, 1 A5 and 1 A6, respectively. The number of local 
minima discovered by an exhaustive search of these parameter spaces was 102 for M = 4 
and 397 for M = 5. An exhaustive search of the six-dimensional R-factor hypersurface 
would have required the calculation of IV  spectra from approximately lo6 structures and 
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was not computationally feasible with any machines currently available to us. We note that 
the density of minima appears to scale approximately as CM, which would be expected 
from simple geometrical arguments. 

The number of trial structures required for the SA search versus the number of structural 
parameters is shown as a log-log plot in figure 9. The good fit to a straight line indicates 
that the scaling relation is polynomial in the number of varied parameters. Least squares 
fitting determined the exponent to be M = 6.0f0.3. For comparison, also shown in figure 9 
is the non-polynomial scaling curve for an exhaustive search (which depends exponentially 
upon the number of varied parameters). We note that the simulated annealing algorithm has 
a much less favourable scaling relation than a single local search. However, the existence 
of local minima means that the local search must be repeated a number of times that scales 
exponentially with the number of varied parameters. For sufficiently complex surfaces, 
simulated annealing may be more efficient than multiple launch local searches. 

I 
0.4 0.5 0.G 0.7 0.8 

Loglo(No of parameters) 
Figure 9. A log-log plot of the average number of trial smctures investigated by a search 
algorithm as a function of the number of structural parameters. The scaling relation of the 
simulated annealing algorithm (.) fie to a stnight line ulat has slope 6.0+0.3. For comparison 
the expanential scaling behaviour of an exhaustive search is shown (0 ). 

6. Applifations Of TLEED theory: Structum determination 

Table 1 shows the thirty-two unknown surface structures that have been solved and published 
by TLEED up to mid-1994. The bulk of these surface structures have been investigated using 
automated search algorithms in combination with TLEED (ATLEED). 

7. New structural methods based upon tensor Lmn concepts 

7.1. Introduction 

In this section, we review some of the extensions and applications of TLEED theory to LEED 
analysis. The central concept of TLEED theory is that distortions of a reference surface may 
be treated perturbatively and that this treatment leads to great increases in computational 
efficiency. These distortions are not confined to structural displacements; for example, the 
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Table 1. Tabulation of suface structures solved by the n m  technique. The majority of the 
listed structures were solved by TLEED combined with an automaled search algorithm (ATLED,. 

System Method Reference 

W(I OObO (disordered) 
Mo(1 OO)-c(2 x 2)-S 
Mo(lOO)c(Z x 2)-C 
Rh(l I I)-@ x 2)-CzH3 
R(l 11)-(2 x Z)-CzH3 
R ( l I 1 )  
R(l 11)-(2 x 2)-0 
Re(OOO1)-(2 x 2)-S 
Re(000 1)-(2-,6 x 2,6)R3@.S 
@-SiC(I 00)-c(2 x 2) 
fl-SiC(I OObp(2 x I )  
Mo,Rej-,(lOO) 
Cu(llO)-(2 x 3)-N 
Ni(1 1 1)-p(2 x 2)-CH3CN 
Si(lOO)-(2 x 2)-A1 
RsTi(1 1 1 )  
Rh(l 11) (8 x -&)-I 
Ni(l 1 1)-c(4 x 2)-2NO 
R(l 1 1)-p(2 x 2)-NO 
Rh(lIO)-pZmg(2 x 1)-2CO 
Rh(l 1 1)-(%6Xd)-2CO 
&?(I I I)-C6&-CO 
Rh(l1 l)-CsH6-CO 
Fe30.41 11) 
€t(l 1 l)-Fe,Oa (multilayer) 
HzO(000 I )  (ice) 
W(100)-Cu 
Si(lOO)-(2 x 1)-Cs 
Si(l R O W  x 1)-K 
Rh(1 OO)-c(2 x 2)-S 
Rh(1 OO)-p(2 x 2)-S 

TLEUl 
ATLEED 
ATLEED 
ATLEED 
A l L E D  
ATLEED 
ATLEED 
ATLEED 
ATLEED 
ATLEED 
A N E D  
A'ILE€D [65] 
ATLEED [86] 
ATLEED [87] 

ATLEED [891 
A ~ D  [901 
ATLEEG 
ATLEED 
ATLEED 
A T L E D  
ATLEED 
A N E D  
A X E D  
ATLEED 
ATLEED 
ATLEED 
ATLFED 

A W D  
ATLEEG 
ATLEED 

ATLED 1887 

[91[ 921 
1921 
1931 

chemical replacement of one atom in the reference surface with another may be treated by a 
variation of TLEED theory. In addition. the success of the TLEED approximation has led to the 
development of novel approximation schemes that exploit similar physical approximations 
to full multiple scattering, such as linear LEED. 

7.2. Linear LEED 

Linear LEED (LLEED) is a new approximate method that has been developed to perform 
coarse surveys of structural parameter space 1521. Since LLEED is designed to explore 
larger areas of the structural parameter space than TLEED, it is particularly useful when 
used in conjunction with TLEED. LLEED allows the exploration of combinations of atomic 
displacements involving the simultaneous displacement of several atoms in the reference 
structure. It is assumed that these displacements make linearly independent contributions 
to the scattered amplitude. This assumption, when, valid. leads to significant computational 
savings compared to full dynamical calculations. 

Consider a surface structure in which we wish to locate one structural coordinate of 
N atoms. Therefore we are performing a search for N structural parameters within an N -  
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dimensional hypercube of parameter space. In LLEED, just as in TLEED, full dynamical LEED 
calculations are performed for reference structures. However, in contrast to TLKED, for LLEED 
full dynamical calculations are performed for several reference structures, which correspond 
to points in parameter space that lie along the edges of the hypercube (see figure IO). 

i 

X 

F i y r e  10. A schematic illustration of the linear LEU) approximation. Shown is a three- 
dimensional hypercube corresponding to the parameter space of three ~ t ~ c t u r a l  parameters. 
The surface structure corresponding to any combinadon of these three parameters is a point 
somewhere inside the cube. In the linear LEW approximation. full dynamical calculations are 
performed to compute the change in the LEED amplitudes for smctures corresponding to points 
along the edge of the hypercube. The reference structure, withrespect to which these changes are 
measured, i s  one comer of the hypercube. The change in amplitude for any point in parameter 
space inside the cube is considered to be the superposition of the changes in amplitude calculated 
at the projected points on the edge of the hypercube. 'This is an approximation if the structural 
parameters are correlated. 

In LLEED, it is assumed that the LEED amplitude for a surface represented by a point 
in parameter space inside the cube is simply a linear combination of the LEED amplitudes 
for the corresponding points of the edge of the hypercube. Since simply adding together 
a set of amplitudes has virtually no computational overhead, the time taken to explore the 
entire hypercube is dominated by the reference structure calculations. Since the number 
of reference structure calculations scales linearly with the number of structural parameters, 
the time taken to explore the region of parameter within the hypercube scales linearly with 
N rather than exponentially. Not only is this scaling more advantageous than a directed 
search but, if the LLEED approximation is valid, LLEED can be used to exhaustively search 
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the parameter space. Consequently, the problem of distinguishing between global and local 
minima does not arise. 

In the LLEED approximation, it is assumed that variations in the structural parameters 
make linearly independent contributions to the scattered amplitude. This precludes the use 
of the approximation to consider different coordinates of the same atom as independent 
structural parameters. This circumstance requires one reference calculation for every 
possible position of the atom and destroys the linear scaling of the method. Further, 
linear independence requires that there is no correlation in the scattered amplitude between 
variations of any pair of structural parameters. This approximation is exact in the kinematic 
limit where the scattered amplitudes from each atom are summed to obtain the total scattered 
amplitude, but, in the presence of multiple scattering, LLEED is an approximation. Multiple 
scattering allows electrons to follow paths that link together a pair of atoms. Consequently, 
multiple scattering causes correlations between two displaced atoms to be present in the LEED 
amplitude. Just as in our discussion of TLEED, these correlated multiple scattering paths can 
be classified into two types: those on which an electron returns to the same (displaced) atom 
more than once, and those on which the electron scatters between two or more different 
displaced atoms. In contrast to TLEED, LLEED treats the closed multiple scattering paths 
exactly since a full dynamical calculation is performed for each independent displacement 
of an atom. Both TLEU) and LLEED completely neglect open multiple scattering paths that 
link together displaced atoms. 

In our discussion of sections 3.3 and 3.4, we have argued that multiple scattering 
correlations limit the radius of convergence of the TLEED approximation. Further we have 
argued that the open scattering paths are the most important source of correlations in LEED 
I V spectra. Thus it would appear, in principle, that the LLEED approximation would have the 
same radius of convergence as TLEED. In the initial applications of the method, this is found 
not to be the case [41]. This suggests that LLEED can be a good approximation in cases where 
scattering between displaced atoms is unimportant. An obvious case is a surface where the 
displaced atoms are further apart than the inelastic scattering length of the electrons. In this 
case the LLEED approximation is an excellent model of a full dynamical calculation whatever 
the magnitude of the atomic displacements. By comparison, TLEED will always suffer from 
finite radius of convergence in this case since, in contrast to LLEED, it neglects the closed 
multiple scattering paths that become important as the atomic displacements grow. 

7.3. Direct methods 

Pendry et a1 have proposed a direct method for LEED, based upon TLEED theory [30,53- 
561. Instead of attempting an inversion of a set of IV spectra, one considers the difference 
between the measured I V  spectra and those calculated for a reference surface. The direct 
method then extracts the atomic positions from this difference spectrum. The fundamental 
advantage of this approach is that the difference spectrum can be interpreted perturbatively 
by TLEED theory and avoids the use of a full dynamical calculation. This approach is related, 
at least conceptually, to the holographic techniques recently proposed for the interpretation 
of electron scattering at surfaces 157-591. If we 'regard the amplitude scattered from the 
reference surface as a reference wave, the intensity spectra from a trial surface are produced 
by the interference of this wave with an object wave that is scattered by the perturbation 
produced by the atomic displacements [60, 611. 

Pendry et al have used this approach to the determination of the interlayer spacings 
and adsorption heights for several simple systems: Rh(llO), Rh(ll0)-(I x 1)-2H, W(100) 
[30], Ni(1 OO)-c(2 x 2)-0 [55, 561, Ni(lOO)-p(2 x 2)-0 [56] and~Ni(lOO)-c(Z x 2)-S [56]. 
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In each of these cases the reference Structure was the bulk termination of the solid and 
the displacements directly determined were 0.1 8, or less. The magnitude of the retrieved 
displacements is limited because this version of the direct method employs the linear version 
of TLEED theory which fails for larger displacements. A more sophisticated scheme. based 
on the full TLEED theory, has been proposed and applied to one test case [62]. In principle, 
this development should enable the application of the direct method to surfaces in which 
the actual atomic positions deviate by more than 0.2 8, from their positions in the reference 
structure. 

Despite this development, the direct methodology has a number of disadvantages 
compared to more conventional methods. First, it requires the comparison of absolute 
experimental and theoretical intensities, a generally undesirable procedure since it is well 
known that static and dynamic disorder within the surface usually leads to significant 
disagreement between the absolute intensity of calculated and experimental IV  spectra. 
While this deficiency can be overcome by using R-factor methods, this would add 
significantly to the complexity of the method and the inversion procedure. In addition, 
the direct method requires the solution of an overdetermined set of simultaneous equations, 
which relate the intensity differences to the atomic displacements (typically there are many 
times more experimental energy points than structural parameters to be determined). This 
represents a difficult and unstable numerical problem, which has no exact solution. Its 
solution requires sophisticated and time-consuming computational techniques. 

A principal advantage of these direct methods is that they avoid the problem of local 
versus global minima. Thus, although the initial results of this approach appear promising 
[63], the direct method requires further development before it can be considered as a reliable 
alternative to trial-and-error or optimization methods. 

7.4. Chemical TLEED 

7.4.1. Introduction The Erlangen group has appIied the TLEED formalism to the treatment 
of chemical displacements; the substitution of one surface atom (such as 0) for another (such 
as S) 164-661. This distortion of the surface composition is described by a change of the 
atomic t-matrix for the substituted atom. For instance, if atom A is replaced by atom B then 

The TLEED method can be used to treat chemical substitution by performing the reference 
structure calculation for a surface with a particular chemical composition. Then the I V 
spectrum from a bid structure with a different chemical composition is computed by the 
TLEED approximation with 61 given by equation (7.1). 

In order for the TLEED approximation to be valid in the case of chemical substitution, 
the change in the t-matrix must be small compared to the t-matrix of either atomic species. 
This implies that the scattering factors of atoms A and B must, in some sense, be similar. 
Therefore, a necessiuy condition for the application of chemical TLEED is that the difference 
between the total scattering cross section of the atom pair is small compared to the scattering 
cross section of either atom. 

7.4.2. Chemical substitution in overlayer systems The Erlangen group have tested~ the 
chemical TLEED approximation in three cases [MI. First, a reference calculation was 
performed for a Ni(lOO)-(l x 1)-0 overlayer system in which the oxygen adatoms were 
placed d = 1 8, above the hollow adsorption site. The chemical TLEED approximation was 
then used to calculate IV  spectra from a trial structure in which every second oxygen atom 
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was replaced with a vacancy, thus creating a Ni(lOO)-c(Z x 2)-0 overlayer. The results 
of this trial structure calculation were then compared to a full dynamical calculation for 
the Ni(1 OO)-c(2 x 2)-0 surface using the Pendry R-factor (see figure 11). The R-factor 
between the chemical TLEED and full dynamical calculations was found to be Rp  = 0.19, a 
value that is similar to the level of agreement obtained between full-dynamical theory and 
experiment for this type of overlayer system. 

0 20 0 400 0 20 0 4 0 0  
energy lev1 
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.7 . 0  .9 

h,  [AI 
Figure 11. Comparison of the LEED I V spectra of a fractional-order beam of the Ni(l00)- 
c(2 x 21-0 surface computed using a full dynamical (FD) calculation (full curves) and by 
chemical TLEED (dashed lines). The reference Structure for the chemical TLEW calculation was 
a Ni(lOO)-(I x I ) -0  surface with an adsorption height of h = 1.0 A. (a) Comparison for 
h = 1.0 A. (b) Comparison for h = 0.8 A. In this case chemical ’ILEED is combined with 
(geometrical) n E E D  to perform bo& chemical substitution and the relaxation of the overlayer 
spacing. (c) The R-factor camparing the FD calculation at h = 0.8 A and the combined chemical 
+LEED/ILEED calculation for the Ni(l OO)-(l  x 1)-0 referewe surface where k = 1.0 A. (After 
Doll er 01 1641). 

These results suggest that multiple scattering between the oxygen atoms in the (1 x 1) 
overlayer makes a significant contribution to the ZV spectra from this overlayer system. If 
there was no multiple scattering among atoms in the overlayer, then the chemical TLEED 
approximation would be exact. Consequently the R-factor value of 0.19 represents, at least 
approximately, the effect upon the IV spectra of neglecting multiple scattering between the 
0 atoms. Despite this relatively large R-factor value, the authors were able to show that 
the 0 adsorption height of d = 0.77 .& could be determined within 0.03 A by combining 
chemical tensor LEED with the conventional (geometrical) TLEED approximation and starting 
with the reference structure described above. This suggests that chemical and geometrical 
displacements are only weakly correlated in the IV spectra and that there is no structural 
information loss associated with the adoption of the chemical TLEED approximation. 

A less radical perturbation of the reference structure, where the chemical TLEED 
approximation should work much better, is the replacement of the oxygen atoms with 
sulfur atoms. The Erlangen group have tested this idea by performing a reference structure 
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calculation for Ni(lOO)-p(2 x 2)-0 and then used chemical TLEED to chemically substitute 
S atoms for 0 to create a Ni(lOO)-p(2 x 2)-S trial structure (figure 12). In this case the 
level of agreement between the chemical TLEED calculation and a full dynamical calculation 
for Ni(1 OO)-p(2 x 2)-S is of the order of R p  N 0.05. Thus chemical TLEED is successful, 
despite the strong disagreement between the ZV spectra forNi(1 OO)-p(2xZ>S and Ni(lO0)- 
p(2 x2)-0; R p  = 0.78. This suggests that multiple scattering among the adatoms is relatively 
unimportant for this dilute overlayer system, so that the scattered amplitude is dominated by 
multiple scattering paths on which the electrons scatter from an adatom only once. Whilst, 
in comparison to a (1 x 1) overlayer, one anticipates that the (open) multiple scattering 
paths linking different adatoms are relatively unimportant in determining the I V spectra for 
such an open (p(2 x 2)) overlayer, closed paths, on which an electron returns to the same 
adatom via backscattering from the substrate, are not suppressed. This suggests that such 
closed paths do not make a significant contribution to the scanered intensity, independent 
of the density of adatoms in the overlayer. This is in agreement with our discussion of the 
failure of TLEED given in sections 3.3 and 3.5. 

(f 0' 

piZxZIO-IA L' 
(1 1 

pI2x210-1A L' 
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energy LeVl 

Figure 12. Comparison of the LE€D IV spectra of two fractional-order beams of Ni(lO0)- 
p(2x2)-S. Dashed lines: spectracomputed by chemical starting withaNi(1 OO)-p(Zx2)-0 
reference ~trucfure. Solid lines: full dynamical calculation. (After Lamer er d 1691). 

7.4.3. Disordered a h y  sulfates An important application of chemical TLEED is to the 
surface structure and compositional determination of disordered alloy surfaces [64, 651. 
To date, LEED studies of random ,alloys have relied universally upon the comparison of 
experimental I V  spectra with the results of theoretical calculations that employ the average 
t-matrix approximation (ATA) to simulate the effects of substitutional disorder [67]. Empirical 
support for the validity of this approximation is to be found in the agreement between the 
LEED results for Ni,Pt,-, and those from both atomistic studies and other composition 
sensitive experimental techniques [67]. More recently the validity of ATA was confirmed by 
comparison with the coherent-potential approximation method (CPA) [40] 

The underlying difficulty encountered when one attempts the calculation of LEED IV  
spectra from random alloys is the lack of periodicity parallel to the surface, which is 
a consequence of the substitutional disorder. The usual approach is to employ the ATA 
approximation [67], so that the disorder is incorporated indirectly and the actual alloy is 
modelled by an ordered surface in which the atomic scattering is described by an effective 
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Figure 13. Comparison of the LEED I V spectrum of the [I  01 beam of lhe MqSRe25 disordered 
alloy surface computed using a full dynamical ATA-LEED calculation (full CIINCS) and using 
chemical ~ E E D  (dashed lines). The curves are campared by the Pendry R-factor Rp. (After 
Doll et nl [641). 

t-matrix calculated by a simple compositional average of the t-matrices of the individual 
alloy components. If we restrict our attention to a binary alloy comprising atom types A 
and B and recognize that close to the surface the composition may be layer dependent, this 
effective t-mabix is given by 

Here c, is the concentration of species A in layer I and fA is the usual atomic t-matrix for 
atom type A. Unfortunately, the average t-matrix is an input to the full dynamical calculation. 
Consequently, in order to fit the surface layer compositions to the experimental spectra, it is 
necessary to repeat full dynamical calculations for every 'trial' surface segregation profile. 

To apply ~ E E D  to this case we perform the reference structure for a surface with 
a particular set of layer compositions which are as close as possible to the true layer 
compositions. If the composition is changed by an amount Sc, then the corresponding 
change in the t-matrix is 

The calculation of the change in the scattered amplitude and the IV spectra of the mal 
structure then proceed using the usual n E E D  formalism. 

One expects that the compositional radius of convergence of the chemical n E E D  
technique is strongly dependent upon the difference between the scattering properties of 
the two components of the alloy. If the atomic t-matrices of the atoms are similar, then 
change in the composition can be large. Conversely. if the atoms are dissimilar, then the 
compositional radius of convergence will shrink. 
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7.5. Thermal tensor LEED 

This method has been tested by calculating the I V spectra of a M@5Re25(10 0) surface using 
chemical tensor LEED and fully dynamical calculations using the ATA method (figure 13). 
The reference structure calculation was performed for the bulk termination of the alloy so 
that c, = 0.75 in all atomic layers parallel to the surface. From figure 13 it is clear that the 
chemical tensor LEED method agrees well with the results of the full dynamical calculation 
over the entire range of possible MO concentrations in the first two atomic planes. In no 
case is the Pendry R-factor between the chemical TLEED and fully dynamic [ATA-LEED) 
calculations greater than 0.1. This agreement is quite remarkable since MO (Z = 42) and 
Re (Z = 75) lie quite far apart in the periodic table and therefore should have dissimilar 
scattering factors. It remains to be seen if this promising method can be applied to systems 
such as NiPt where the atomic scattering of each component is even more dissimilar. 

Tensor LEED is ideally suited for the treatment of small displacements of surface atoms 
from their equilibrium positions. Just this circumstance arises when one considers thermal 
vibrations of surface atoms [68]. Recently, the Erlangen group has adapted TLEm to treat 
the influence of isotropic thermal vibrations of surface atoms upon LEED IV spectra 1691. 
The resulting method is called thermal TLEED. 

In a fully dynamical LEED calculation the effect of isotropic thermal vibrations upon the 
electron scattering is incorporated by computing a set of complex, temperature dependent 
phase shifts. In particular, the atomic 2-matrix of an atom vibrating with mean-squared 
amplitude (&’) is given by [69] 

tc(T,80) = c c i ”  [4n(Z”+ l)(Z.C‘+ l)(Z+ 1)1*” 
e e’ 

(7.4) 

where C is a Gaunt coefficient. The mean-squared amplitude (&*) is related to the Debye 
temperature through 

((8r’)r) Y ( 9 f i / 4 m k 8 ~ )  (1 + (16T2/8~))” (7.5) 
Unfortunately, the phase shifts are an input to a full dynamical calculation. Consequently, 
in order to fit the surface Debye temperature to the experimental spectra, it is necessary to 
repeat full dynamical calculations for every ‘trial’ Debye temperature. 

The fundamental idea of thermal TLEED is to describe the thermal vibrations 
perturbatively using TLEED theory to treat the dynamic thermal atomic displacements. The 
reference structure calculation is performed at finite temperature using a particular set of 
‘reference’ Debye temperatures, usually chosen to be as close as possible to the actual 
Debye temperatures of each surface atom. In the reference slructure calculation, the complex 
temperaturedependent atomic t-matrix of each of the surface atoms is calculated from the 
vibrational amplitudes corresponding to the reference Debye temperatures, equation (7.4). 
We now consider a trial surface, in which the surface atoms have Debye temperatures that 
differ from their values in the reference structure, OD + 88,. The corresponding change in 
the temperature dependent ?-matrix is 

6t = t(T, 8,) - f (T, 8, + 880). (7.6) 
It is apparent that the TV spectra for the trial surface may be evaluated by the usual TLEED 
formalism, using this 8t in place of the usual geometrical change inothe t-matrix. 

Since most thermal vibrational amplitudes are smaller that 0.2 A, OUT experience with 
TLEED leads us to expect that thermal TLEED will reproduce the results of the corresponding 
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Figure 14. Comparison of the LED IV spectra of the (li2.0) beam of Ni(100)-c(4 x 2)-K 
calculated using ~ E E O  and a m calculation for a potassium Debye temperature of 200 K and 
100 K. Full curves: full dynamical calculation using complex phase shifts. Dashed line: thermal 
~ E E D  calculation for 8~ = 100 K starting with a reference structure where @ = 200 K. (After 
Lomm et oi [691). 

full-dynamical LEED calculation. This is found to be the case in practical applications of 
the method. Loffler et a1 [69] have tested thermal TLEED when it is applied to a variety 
of systems. An example of the level of agreement between thermal tensor LEW and a 
full-dynamical calculation using complex phase shifts is shown in figure 14, which displays 
the IV spectrum of the (V2.0) beam for Ni(1 OO)-c(4 x 2)-K calculated by both methods. 

In addition, experimental IV spectra for Ni(lO0) taken at IOOK were used to determine 
the surface Debye temperatures for the first two atomic layers. The reference structure 
calculation employed the bulk Debye temperature of 440 K for atoms in every atomic 
plane. Application of thermal TLEED led to values of 0, = 250 f 50 K in the first layer 
and = 350 f 100 K in good agreement with the average Debye temperature of 335 K 
determined by a fully dynamical calculation in which the Debye temperature of all atoms 
was identical. Similar level of agreement is when thermal tensor LEED is applied to Ni(lO0)- 
c(4 x 2)K. It is interesfing to note that the root-mean-squared amplitude of the Ni atom in 
the top Ni layer (0, = 250 f 50 K) is 0.21 .& compared to the amplitude in the reference 
structure (0, = 440 K), 0.13 A. Clearly, the difference in the mean displacement is smaller 
than 0.15 A, well within the radius of convergence of TLEED. 

DO11 et a1 have also demonstrated that the thermal and geometric displacements are 
almost uncorrelated. This shows that the thermal and structural parameters may be fitted 
simultaneously by TLEED and thermal tensor LEED. Finally we note that thermal TLEED 
is easily generalized to anisotropic vibrations of surface atoms, which would be simply 
described by a non-diagonal change in the t-matrix. 

7.6. Future applications of TEED 

The perturbative approach that forms the foundation of the T L E D  approximation may 
be applied to other electron-based techniques for surface structure determination such as 
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photoelectron diffraction (PED) [70], Auger electron diffraction (AED) [70], high-resolution 
electron energy loss spectroscopy (HREELS) [71] and near-edge x-ray absorption fine structure 
(NEXAFS) [72]. Structure determination using any of these methods requires an adequate 
computational modcl of multiple scattering. Since the electron energies involved are 
similar to those employed for LEED i t  is likely that the radius of convergence of any 
adaptation of the TLEED approach will be sufficient to reduce greatly the amount of 
computational effort required for the sbucture determination using these techniques. The 
TLEED formalism combined with an automated search algorithm has been applied recently 
to photoelectron diffraction [73] and high-energy electron diffraction [74, 751. The linear 
LEED method, adapted from the TLEED technique, has also been applied to photoelectron 
diffraction [76, 771. 
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